What's new
British Ordnance Collectors Network

This is a sample guest message. Register a free account today to become a member! Once signed in, you'll be able to participate on this site by adding your own topics and posts, as well as connect with other members through your own private inbox!

Russian 9M113 Konkurs (Nato: AT-5 Spandrel) wire guided anti tank missile

pzgr40

Well-Known Member
Premium Member
Cutaway model of a Russian 9M113 “Konkurs” (Nato; AT-5 “Spandrel”) anti tank missile.
The 9M113 is a wire guided roll stabilized medium size anti tank missile designed by the Tula Machinery Design Bureau as a replacement for the AT-3 “Sagger”.
The 9M113 is the heavier and more or less “scaled up” version of the 9M111 “Fagott” http://www.wk2ammo.com/showthread.php?t=5493 (Nato Name: AT-4 Spigot) with an improved maximum range and improved armour penetration. The 9M113 was developed alongside the 9M111. The 9M113 was meant for vehicle use, the 9M111 was meant for man portable infantery use, however, the 9M113 can be fired from the 9P135 launching equipment for the 9M111 “Fagott” missile and used as portble infantery equipment..
The design of the missile started in 1962 and in 1974 the 9M113 was officially taken into service.
When compared to western ATGM’s it can be best compared with the American TOW missile when it comes to weight, range and armour penetration.
Steering of the missile is of the SACLOS type (Semi Automatic Command to Line of Sight),
Meaning that the gunner only has to keep the crosshairs of the sight on the target by rotating two wheels –if the target moves- on the 9S451 steering electronics box to guide the missile left / right or up / down.
As this missile is a second gereration anti tank missile, it does not use a joystick anymore to steer the missile to it’s target, making steering through the sight much easier and enhancing the chance of hitting a target first time with an average trained crew to appoximately 90%.

The 9M113 is normally used in the BRDM-2 scout vehicle, where five missiles on a row are placed under a lifting roof, http://www.youtube.com/watch?v=ELDie1b6C90&feature=related
as well as on the BMP-2 rotating cupola as a replacement for the AT-3 Sagger.

Description and functioning of the 9M113 missile:

A launching unit exists of two main parts:

The Launching tube, As I did not take the launching tube of the 9M113 missile because I wanted the missile with unfolded fins, look here: http://www.wk2ammo.com/showthread.php?t=5493
for the working principe of the launching tube and firing sequence. I left the numbers and letters of that posting in this posting, so one can compare. Both launching tubes are nearly identical, exept for size.

The missile, existing of:
- The electric impact fuze, existing of the outer cup (A1) and the inner cup (A2)
- The steering wings (B1)with the steering magnets (B2)
- The shaped charge (C1) with it’s red copper cone (C2) and the wave shaper (C3)
- The 9A234M base fuze (E).
- The sustainer motor (F1) with fuelstick (F2) and the venturi’s (F3).
- The 9Ch237-1 electric ignition cartridge (G1) for the main engine and the black powder ignition booster charge 9Ch179-1 (G2)
- The gyroscope, existing of the gyroscope wheel (H1), the gimbal cage (H2) en the sector steering sliding contacts (H3).
- The pop out wings (J)
- The steering electronics block (K)
- The battery (L)
- The infra red lamp, existing of the light bulb (M1) and the reflector (M2)
- The spring loaded protective cover halves for the lamp (N)
- The wire spool (O) with 4000 mtrs of wire.




When the missile container with missile is placed in the launching unit, the trigger is pulled. This causes the forward thermicaly ignited battery (X3) in the battery housing (X2) on the launching tube to start delivering current.
The battery ignites the rocket gyroscopic driven wheel (H1) which burns for maximal 0,3 seconds to bring the wheel to it’s maximim rotation speed. The gyroscopic wheel is placed in a three axis gimbal (H2) that is fixated at the moment the wheel is swung in action –the missile still in the container-. It is important to first start the gyroscope in the gimbal as this sets the zero point against which all course corrections are executed. After the gyroscope wheel (H1) is brought to it full speed, the fixating clamp on the gimbal is retracted and the gimbal is free, with the zero point set.
On the inside of the front cover (T1) the short circuit plug (T2) is placed into the contra plug in the nose of the missile. This shortcircuits the fuze of the hollow charge (E), the sustainer motor (G1) and the gas generator (Q), so the missile cannot be fired or armed with the front cover (T1) still closed. A second safety switch (T6) enshures the electric igniter cartridge 9Ch284 (R) for the gas generator (Q) can only ignite if the cover has flipped over 180 degrees into the lock (T3). This alo activates the two battery’s (L) in the lower missile body, so the electric systems of the missile can be served.
The guidance wire is connected to the front (T1)cover by means of a plug (T5). The wire runs down the missile –protected by a cover- ending in the wire spool (O).
The front cover (T1) of the launching tube is opened by means of an explosive bolt (T4). The explosive bolt exists of a black powder driven cylinder with a pin on top that perforates a 1 mm thick steel locking plate, releasing the front cover (T1).
By opening the cover, all electric safety’s are removed and the afterward battery (X4) in the battery housing (X2) of the container (P) ignites the electric igniter cartridge 9Ch284 (R) that ignites the expulsion charge (S) of the gas generator (Q). The gas generator pushes out the gasses through six holes in top and bottom of the vessel outward. The gas enerator is connected to the outer rim of the wire spool housing by means of three break pins, so a pressure build up has to take place before the pins break and the missile is released. The back cover is also placed under perssure up till the moment where it is blown out.
The missile is now being ejected with 86 mtrs/sec from the container in much the same way as a recoiless gun.
The wings (J1) exist of stainles steel formed and spotwelded wings that are pressed flat and wrapped around the body of the missile when in the container. The wings are kept in position by a clamping band (J2) that flies off when the missile leaves the container (P). The wings (J1) are connected to the body of the missile in a 4 degrees –longitudal- angle to make the missile roll with 4 to 7 revolutions per second.
On the moment the missile leaves the container, the steering electronics block (K1) is started by the inertia switch in the electronics block, connecting it with the battery’s (L). This also powers the steering magnets (B2) in the nose.
Because the missile is roll stabilized the commands “left, right, up and down” must be read the same all the time , unaware of the radial (rolling) position of the missile. Therefore the sector steering sliding contacts (H3) are placed on top of the longitudal shaft of the gimbal. Four slidingcontacts run over a 90 degree (1/4 circumference) contact surface on the shaft, the other 270 degrees (3/4 circumference) isolated. Each 90 degrees sliding contact sector rotates 90 degrees compared to the one below, so forming a stepped full circle. Each slidingcontact will now steer the missile in it’s designated radial position.
As the missile leaves the container, the springloaded steering fins pop out (rotate 90 degrees) in a lock so they cannot return to their transport position.
In the tail of the missile an infra red lamp (M1, M2) is build in. The bulb (M2) of this lamp is protected by two springloaded half discs that are kept in position by two thin celluloid ring halves in a roundgoing thin slot. If the gas generator is fired the celluloid ring halves are burned, however the two disc halves are kept pushed inward by the pressure, so protecting the lamp. After the missille has left the container, the disc halves are forced open by the spring, with the lamp shining back an infra red signal to the gunner’s sight that can be tracked and corrected to the target by the gunner. The infra red light bulb (M2) is –together with the gyroscope wheel (H1)- one of the two first parts to be activated. By heating up the light bulb it becomes a little soft and flexible, enabeling it to better survive the rough handling upon ejection by the gas generator (Q).
Some ten meters after the missile has left the container the 9Ch237-1 electric ignition cartridge (G1) for the main engine ignites the black powder ignition booster charge (G2) for the sustainer motor (F1). This ignites the fuelstick 9Ch179-1 (F2) –packed in a green rubber heat resistant pouch- which accelerates the missile to a speed of 208 mtrs/sec.
The sustainer motor has two -opposite placed- venturi’s (F3).

The shaped charge (C1) exists of a red copper cone, placed in a OKFOL (95% HMX with 5% wax) charge. In the lower part of the explosive charge a so called wave shaper (C3, white) is placed enshuring the detonation wave will hit the cone (C2) in a more even way, resulting in improved armour penetration.


The 9A234M base fuze (E ) is of the PIBD (Point Ignited Base Detonated) type. It exists of an aluminium fuze housing (1) with the booster housing (2) screwed on top. The booster housing is placed in the base of the hollow charge (C1).
The bakelite inner works contain the fuzing mechanism. This exists of two main parts; The bakelite lower plate (3) in which the groove (4) for the pyrotechnic self destruct fuze is machined as well as a slot for the ignition pellet (5). The contact point (6) for the inertia switch (7) is also placed in the lower plate (3). The forward housing is a bakelite cup (8) in which two switches (9, capacitator loading) & (10, self destruct) are placed, as well as the inertia switch (7) and the rotating arming slider (11) which houses the electric firing cap (red).
Both switches (9&10) exist of a wound spring (12) which is kept in a tensioned position by a spring tensioned pin (13) that blocks the switches (9&10) from closing. These pins are kept in the tensioned –upward- position by the composition (4) of the pyrotechnic self destruct fuze. The spring loaded pin (14) that keeps the rotating arming slider (11) in the safe postion is kept in this –upward- position by a black powder pellet (15).When the missile is thrown out of the tube by the gas generator, the inertia switch (7) sets back, closing the contact (6). This sets off the ignition pellet (5). The flame of this pellet ignites the black powder pellet (15) as well as the pyrotechnic fuze (4) (green arrows). As the black powder pellet burns away, the spring loaded pin sinks, releasing the rotating arming slider (11) to move the electric firing cap (red) under the detonator of the booster charge (2). The first contact (9) is also closed as it’s pin (13) sinks, and the capacitator for triggering the firing cap is being loaded by the battery’s. As this takes about a second, the missile is not armed for the first 75 meters.
The nose fuze exists of two thin metal cups, placed electrically isolated over one another. When on impact the nose is crushed and the outer cup (A1) touches the inner cup (A2), the electric circuit over the capacitator and the firing cap is closed, exploding the firing cap (red).
If the missile misses the target, the pyrotechnic fuze (4) will burn up (blue arrows) untill it reaches the last springloaded pin (13) which sinks, activating the self destruct switch (10) after 4000 meters of flight.
The 9M234M fuze, used in the 9M113 “Konkurs” is a derivant of the 9M234 fuze, used in the 9M111 “Fagot”. As the 9M113 has a longer time to flight -19 second for the 9M113 and 11 seconds for the 9M111- to maximum range (and self destruct) the main difference will be the burning speed of the pyrotechnic delay fuze untill self destruct.
The steering corrections are transferred from the launcher to the missile by a 4000 mtrs. long wire, reeled down from the wire spool (O).

List of data for the 9M113 :

Diameter : 135mm.
Length of missile without gas generator : 953mm.
Length of missile with gas generator : 1212mm.
Length of missile container : 1260 mm.
Wingspan : 468mm.
Weight 9M113 missile : 14,6 kg.
Vo : 86 mtrs /sec (expulsion by gas generator).
Vmax : 208 mtrs/sec (sustainer motor).
Rotation speed : 5 to 7 revolutions per second
Minimum range : 75 mtrs.
Maximum range : 4000 mtrs.
Penetration of the 9N131M shaped charge warhead (3,0 kg) : 600mm RHA (pantserstaal) @ 0 degr., 300 mm RHA @ 60 degr.
Explosive filler : OKFOL (95% HMX with 5% wax)
Flight time to maximum range : 19 seconds.

The firing of a 9M113 missile,
http://www.youtube.com/watch?v=-fTaqGlngKA&feature=related


The 9M113is being used by the following countries:
Bulgaria, Commonwealth of indepandent states, Czech republic, Finland, Gorgia, Hungary, Indonesia, India, Iran , Morroco, Moldavia, Peru, Poland, Romania, Slovakia, Sowjet Union, Turkey, Syria, Ukraine, United states (training only).

Regards, DJH
 

Attachments

  • Pict 002 9M113 Konkurs missile as in flight.jpg
    Pict 002 9M113 Konkurs missile as in flight.jpg
    98.1 KB · Views: 198
  • pict 003 9M113 Konkurs steering fins.jpg
    pict 003 9M113 Konkurs steering fins.jpg
    92.2 KB · Views: 198
  • Pict 004 9M113 Konkurs  shaped charge.jpg
    Pict 004 9M113 Konkurs shaped charge.jpg
    96.5 KB · Views: 167
  • pict 005 9M113 Konkurs sustainer motor.jpg
    pict 005 9M113 Konkurs sustainer motor.jpg
    96.4 KB · Views: 146
  • pict 006 9M113 Konkurs gyroscope, battery, electronics, wire spool and lamp.jpg
    pict 006 9M113 Konkurs gyroscope, battery, electronics, wire spool and lamp.jpg
    100.4 KB · Views: 159
  • pict 007 9M113 Konkurs gyroscope complete.jpg
    pict 007 9M113 Konkurs gyroscope complete.jpg
    103.4 KB · Views: 148
  • pict 008 9M113 Konkurs gas generator.jpg
    pict 008 9M113 Konkurs gas generator.jpg
    98 KB · Views: 141
  • Konk.jpg
    Konk.jpg
    81.9 KB · Views: 136
  • Pict 001 9M113 Konkurs missile + gas generator.jpg
    Pict 001 9M113 Konkurs missile + gas generator.jpg
    96.2 KB · Views: 227
Last edited:
Base fuze 9M234M details
 

Attachments

  • 01- Fuze 9E234M safe.jpg
    01- Fuze 9E234M safe.jpg
    90.1 KB · Views: 82
  • 06- Fuze 9E234M self destruct switch spring and pin in fired position.JPG
    06- Fuze 9E234M self destruct switch spring and pin in fired position.JPG
    94.1 KB · Views: 72
  • 05- Fuze 9E234M setback switch.JPG
    05- Fuze 9E234M setback switch.JPG
    94.9 KB · Views: 73
  • 04- Fuze 9E234M pyotechnic fuze.jpg
    04- Fuze 9E234M pyotechnic fuze.jpg
    91.7 KB · Views: 71
  • 03- Fuze 9M234M self destruct.jpg
    03- Fuze 9M234M self destruct.jpg
    93.5 KB · Views: 72
  • 02- Fuze 9E234M armed.JPG
    02- Fuze 9E234M armed.JPG
    90.4 KB · Views: 71
The BMP-2 and DRDM-2 with the 9M113 and the infantery version
 

Attachments

  • BMP-2 with 9M113 konkurs.jpg
    BMP-2 with 9M113 konkurs.jpg
    45.4 KB · Views: 53
  • BRDM-2 with 9M113 Konkurs.jpg
    BRDM-2 with 9M113 Konkurs.jpg
    58.5 KB · Views: 51
  • 9M113 infantery version.jpg
    9M113 infantery version.jpg
    49 KB · Views: 56
@ Mr fuze , you're welcome . Always looking out for your fuze cutaway postings. Love them.
@ Miguel; not the biggest , that's the AA-1 Alkali (or K5 missile)
@ Songun; I only have one chance not to spoil a special -and hard to obtain- piece like this, so I better do it right the first time , or I'll be looking at a spoiled cutaway forever. Surprisingly, most often factory cutaways are quite sloppy, exept the Oerlikon and Rheinmetal ones. They are perfect.
 
Last edited:
more info

If I sent you some pictures of some pieces from a detonated AT 5, could you identify? They are unique, just can't find them in your cutaways.
 
I'm not sure how I missed this when you first posted it. I can see some similarities with Milan, Swingfire and TOW. Thanks for showing.
 
Hello PZGR40:

Most excellent work! More like an artist! Wished you could have posted too a time-lapse video of the work from start to finish... :) Again, superb work and thank you for the great pics, write up, etc.

Mad Doc
 
The michaelangelo of the ordnance world! bravo pzgr40:congrats:

I'll second that quote from Paul....another superb cut, not sure how I missed this one, but glad it was bumped !!!!

I imagine there are many hours studying before even a cut is made........its not simply a case of hacking away at a piece, getting the cut exactly right to show the piece to its full potential takes a special kind of skill - a true craftsman - DJH congratulations, another astounding piece.

kind regards Kev
 
Thank you all. At the moment the hobby has ground to a halt as I am too bussy with my two years cource I am following at the shipbuilding college. But in the future new pieces will shurely be posted.

@ mad doc; I did hat with "the making of a 8,8cm Sprgr patrone" , "manufacturing of a 75 mm APCBC cartridge" and the "20x110 HEI Hispano suiza". If I am correct all of them also at this forum.

I always take time to study a piece I am going to cut as you only get one chance to change it into a nice cutaway model either a failure.

Regards, DJH
 
Last edited:
Top